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Abstract-Combined heat and mass transfer in natural convection along a vertical cylinder in a saturated 
porous medium is studied. The boundary layer analysis is formulated in terms of the combined thermal 
and solutal buoyancy effect. The flow field characteristics are analyzed in detail for both cases where the 
concentration gradients can either aid or oppose the thermal buoyancy forces. The effects of the curvature, 
the buoyancy parameter and the Lewis number on the temperature, concentration and flow fields, and on 

the surface heat and mass transfer rates are discussed. 

1. INTRODUCTION 

NATURAL convection flows driven by combined ther- 
mal and solutal buoyancy forces in a porous medium 
are encountered in many geophysical and engineering 
applications. These include moisture transport in ther- 
mal insulations, pore water convection near salt 
domes, movement of contaminants in groundwater, 
and waste dissolution and release in underground 
nuclear waste disposal. The majority of studies on 
natural convection in porous media deal with a single, 
namely thermal, driving force [I, 21. Research on 
buoyant flows arising from combined forces has been 
directed primarily on the convective instability of 
porous layers with vertical density gradients [3-51. 
Only a few studies have considered the interaction 
between the thermal and solutal buoyancy effects in 
porous media subjected to horizontal density gradi- 
ents. Bejan and Khair [6] presented a scale analysis of 
heat and mass transfer about a vertical plate in a 
porous medium. They considered concentration 
gradients which aid or oppose thermal gradients, but 
reported limited similarity results for the latter case. 
Trevisan and Bejan [7] extended the analysis to a 
porous medium confined between two vertical walls 
maintained at different temperature and con- 
centration levels. Recently, Evans and Nunn [8] stud- 
ied combined heat and salt transport in sediments 
surrounding a salt column. The present study 
addresses the problem of free convection about a ver- 
tical cylinder in a porous medium due to combined 
driving forces. Natural convection about a vertical 
plate is a special case of the problem under con- 
sideration. The formulation of the problem is based 
on the combined buoyancy effect, rather than the 
limiting case of heat-or mass-transfer driven flow. 
The range of buoyancy parameters and Lewis num- 
bers for which flows are possible are identified for 
both favorable and adverse solutal density gradients. 
Numerical results are presented to quantify the trans- 

verse curvature effects on the flow, temperature and 
concentration fields. The problem under con- 
sideration has important applications in the study of 
geological formations ; in the exploration and thermal 
recovery of oil ; and in the assessment of aquifers, 
geothermal reservoirs and underground nuclear waste 
storage sites. Results obtained from this study will be 
helpful in the prediction of flow, heat transfer and 
solute or contaminant dispersion about intrusive bod- 
ies such as salt domes, magmatic intrusions, piping 
and casing systems and similar structures found in 
these applications [ 1, 2, 8,9]. 

2. ANALYSIS 

Consider the problem of steady free convection 
about a vertical cylinder of radius R in a saturated 
porous medium at temperature T, and concentration 
C,. The surface of the cylinder is maintained at a 
uniform temperature T, and uniform concentration 
C, (Fig. 1). Let x and r denote the axial and radial 
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FIG. 1. Schematic diagram of the physical system. 
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NOMENCLATURE 

A constant defined by equation (15) T temperature 
AC aiding case, equations (6), (8) and (19) TPR heat flux ratio defined by equation (30a) 

with the ‘+’ sign u axial velocity component 
C concentration radial velocity component 
CPR mass flux ratio defined by equation (30b) i buoyancy parameter, equation (16) 
D equivalent mass diffusivity of the porous X axial coordinate. 

medium 

f 
9 
Gr, 
j 
K 
Le 
N 

Nu, 
oc 

Pr 

P 
r 

dimensionless stream function 
gravitational acceleration 
local Grashof number, equation (14) 
mass flux 
permeability 
Lewis number, a/D 

buoyancy ratio, equation (17) 
local Nusselt number, equation (29a) 
opposing case, equations (6), (8) and (19) 
with the ‘-’ sign 
Prandtl number, v/a 
pressure 
radial coordinate 

Greek symbols 
a thermal diffusivity 
/I=, ,& absolute values of the coefficients of 

concentration and thermal expansion 

9 transformed radial coordinate 
e dimensionless temperature 

p viscosity coefficient 
V kinematic viscosity coefficient, cc/p, 

5 transformed axial coordinate 

P density 
dimensionless concentration 
stream function. 

R cylinder radius 

4 heat flux Subscripts 
SC Schmidt number, v/D W quantity at wall 

Sh, local Sherwood number, equation (29b) CO quantity at infinity. 

coordinates measured along and from the axis of the 
cylinder, respectively. In order to reduce the number 
of independent parameters in the analysis, we use 
the following conventional assumptions [5] : (1) the 
porous medium is homogeneous and isotropic, (2) all 
physical properties are assumed to be constant except 
for the density in the buoyancy term, which is given 
by the Boussinesq approximation, (3) the flow is 
sufficiently slow such that the convective fluid and the 
porous medium are in local thermodynamic equi- 
librium and Darcy’s law is valid, and (4) the analysis 
is confined to low-level concentration differences such 
that the cross diffusion effects and the interfacial vel- 
ocity at the cylinder surface due to mass diffusion can 
be neglected. 

Under these assumptions, the equations governing 
the flow, energy and solute transport in cylindrical 
coordinates are 

&(ru)+$(m)=O 

K ap 
v= --- 

P ar 

(1) 

(2) 

u$+vg= D[:G(rg)+g] (5) 

where u, v, p, T and C are volume-averaged quantities 
representing respectively the velocity components in 
the x- and r-directions, pressure, temperature and 
concentration. The properties p and p are the solution 
density and viscosity, Kis the permeability, and a and 
D the equivalent thermal and mass diffusivities of the 
saturated porous medium. The density in the buoy- 
ancy term in equation (2) is given by 

P = ~,{1-[[B,(T--T,)fBc(c-co)l>. (6) 

The subscript ‘co’ denotes the condition at infinity; 
/IT. and flc are the absolute values of the coefficients of 
thermal and concentration expansion. The ‘+’ and 
‘ _’ signs denote cases where the solutal buoyancy 
effect aids and opposes the thermal buoyancy effect, 
which are hereafter referred to as the ‘aiding case’ 
(AC) and the ‘opposing case’ (OC), respectively. 

The boundary conditions for the problem are 

v=O, T=T,, C-C, at r=R (74 

u-*0, T-T,, C+C, as r+oo. (7b) 

2.1. Boundary layer equations 
The boundary layer approximation can be invoked 

if the Grashof number is so large that the buoyant 
flow is confined to a thin layer adjacent to the cylinder 
surface [9, IO]. Under the boundary layer assump- 
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tions, the governing equations become 

(9) 

a$ ac a+ ac - _____+ 
dr ax ax dr (10) 

where rj is the stream function which automatically 
satisfies the continuity equation. The velocity com- 
ponents are given by 

w a* 
ru=--, n,= ---. 

dr ax (11) 

In order to nondimensionalize the above equations 
we introduce the pseudo-similarity variable rl 

q = (R/2x)(Gr,/A)“*[(r/R)* - I] 

and the non-similarity variable t 

5 = (2x/R)(A/Gr,) “I 

together with 

(12) 

(13) 

Gr, = BK[B~(T,-T,)+B~(C,-C,)I~/V* (14) 

A = (1-w)/Pr+w/Sc (1% 

w = u&(CW - cm[B*(~w - Tc.2 +/%(cv - co)l. 

06) 

Note that Gr,, which is the modified local Grashof 
number for a saturated porous medium, is defined to 
represent the combined buoyant driving force. The 
buoyancy parameter w is a measure of the magnitude 
of the concentration (mass) buoyancy effect relative 
to the combined thermal and mass buoyancy effect. 
It is related to the more commonly used ‘buoyancy 
ratio’ N by 

w = N/W+ l), N = MC, - CoMMTw - T.4. 

(17) 

The buoyancy parameter w varies between 0 and 1. 
Values of w close to 0 and 1 imply dominant thermal 
and solutal buoyancy effects, respectively. 

The dimensionless stream function J temperature 
0 and concentration 4 are defined by the following 
relations : 

J/(x,y) = vRA”* Gr:/‘f(& q) (1W 

T(x, y) = T, + (Tw - TJXC, V) (1W 

CkY) = CO + (G - &&#4c. tl). W34 

Under these transformations, the governing equa- 
tions and the boundary are cast into the following 
form : 

f”-[(1-w)B’+wC$Y] = 0 (19) 

((I-w;e+w) [(I +eev+ w 

+:c(e+,+f~)=o (20) 

((I-wL+w) [(I +&IM’l’+tf#’ 

+!++-f’$)=o (21) 

f+i;$=O, e=i, 9=1 at q=O (2W 

y-0, e-+0, 4-0 as q-+m (22b) 

where the prime denotes differentiation with respect 
to n and Le is the Lewis number: Le = Sc/Pr = 
(v/D)/(v/a) = a/D. The boundary condition on f in 
equation (22a) follows from the impermeable bound- 
ary condition at the cylinder surface (u = 0). It can be 
integrated over 5 to obtain a simpler expression of the 
form 

since f(0, 0) = 0. 

/(5,0) = 0 (22c) 

For 5 = 0, the above equations reduce to those for 
natural convection about a vertical flat plate. Hence, 
deviations from 5 = 0 measure the effect of transverse 
curvature. It should be noted that as R + co or for 
thin boundary layers where r does not differ appre- 
ciably from R, the pseudo-similarity variable 1 given 
by equation (12) reduces to the corresponding simi- 
larity variable for a flat plate, (Gr,/A)“*y/x, where 
y = R-r. 

2.2. Special cases 
In addition to the curvature effect represented by 

the parameter & other parameters affecting the flow, 
temperature and concentration fields in the porous 
medium are the buoyancy parameter wand the Lewis 
number Le. Two special cases of these parameters are 
of particular importance. 

(1) w = 0 case and w = 1 case. These special cases 
represent two limiting solutions. For w = 0, the above 
variables and equations reduce to those for purely 
heat transfer driven flow [9]. For w = 1, the equations 
represent those for flow driven solely by species 
diffusion. Note that the temperature distribution 
0({, n) in the w = 0 case and the concentration dis- 
tribution $(<,n) in the w = 1 case are both inde- 
pendent of the Lewis number and identical to each 
other. As a result, the flow fields in these two cases 
are also identical and independent of the Lewis num- 
ber (as will be discussed later, the flow direction may 
be upkard or downward in the latter case depending 
on the sign of the solutal density gradient in equation 
(19)). Thus, the flow and temperature fields in the 
w = 0 case (or the flow and concentration fields in the 
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)I’ = 1 case) represent the ‘base case’ solutions in this flows, but it can be readily extended to downward 
study. flows as will be discussed in Section 4. 

(2) Le = 1 case. The Lewis number is a measure 
of the relative thickness of the thermal boundary layer 
compared to the concentration boundary layer. When 
the Lewis number is unity, thermal and mass diffus- 
ivities or length scales are equal to each other; thus 
the temperature distribution 0(<, 9) is identical to the 
concentration distribution 4({, q) under the specified 
boundary conditions. This holds for any value of the 
buoyancy parameter )I* (note that equations (20) and 
(21) are independent of w when Le = 1). Conse- 
quently, it is seen from equation (19) that the flow 
field is also independent of w but in the aiding case 
only. Hence, the flow fields (for the aiding case) and 
the temperature-or concentration-fields (for both 
the aiding and opposing cases) when Le = 1 also rep- 
resent the ‘base case’ solutions discussed above, i.e. 
they are respectively identical to the flow and tem- 
perature fields for the case w = 0 for any Le value (or 
to the Bow and concentration fields for the case w = 1 
for any Le value). 

Integration of equation (19) results 

with 

f ‘(5, rl) = (1 - 4@(S, v) - ed<. rl) (25) 

f’(i&O) = I-2MV. (26) 

Note that the velocity at the surface becomes negative 
for )V > I/2 indicating flow reversal at the surface. 
Therefore, upward boundary layer flows (with 
f’(t, q) > 0 everywhere) are not possible for w > l/2. 
However, they may not be possible even for values of 
w < l/2 depending on the Lewis number. There are 
three possibilities. 

(a) Le = 1. In this case, equation (25) reduces to 

f ‘(s*, q) = (l-zlV)e(g. q) = (I -210&S, ?f). (27) 

When IV = 11’2, the flow is zero everywhere (no flow). 
For 0 < 1~ < l/2, the flow is upward since f’ > 0 
everywhere. For l/2 < IV < 1, the flow is downward ; 
the flow field for a given IV value is identical to, but in 
the opposite direction to that for the (1 -WV) value. 

3. FLOW FIELD CHARACTERISTICS 

It is important to distinguish between the two cases 
in which the solutal buoyancy effect either aids or 
opposes the thermal buoyancy effect in the analysis 
of the resultant flow. For simplicity, the results and 
discussion in this paper are limited to physical situ- 
ations with T, :, T, and C, > C,. 

(b) Le > 1. For Le 7 1, the concentration bound- 
ary layer is thinner than the thermal boundary layer; 
mathematically this implies that 4 drops from unity 
at q = 0 to zero as q + r*) faster than does 0, i.e. 
4(<, q) < 6(<, r7) throughout the boundary layer. 
Thus, for values of M’ between 0 and 1: 2 

(1) Aid~frg case 
The resulting flow in this case is upward as both 

the temperature and concentration variations impose 
favorable density differences (equation (6) with the + 
sign). This can be shown mathematically by inte- 
grating equation (19) to obtain 

f’(5,rl) = (1 -w)6(5? 9) +w&T* rl). (23) 

Note that the velocity component in the axial direction 
is proportional to f 

u = urf ‘9 u, = gK[MTw - T,) +/%(Cw - C,)l/v. 

Since the temperature 0 and concentration 4 are posi- 
tive everywhere, f’ and consequently u are also posi- 
tive everywhere. This is true for any value of the Lewis 
number Le and the buoyancy parameter w. We also 
note that evaluating equation (23) at r) = 0 shows that 
u = u, at the surface, i.e. 

Consequently, equation (25) shows that the prevailing 
thermal buoyancy effect in this case produces upward 
flows withf’({, q) > 0 over the entire boundary region 
for 0 < TV ,< l/2. It is even possible to obtain numeri- 
cal solutions for 1~ vaiues slightly higher than w 7 l/2 : 
in these cases, the dominant thermal buoyancy effect 
produces an upward flow over most of the boundary 
region while the opposing solutal buoyancy effect, 
which is confined to the vicinity of the surface, causes 
a small downward flow next to the surface. However, 
such flows are contrary to the boundary layer assump- 
tion of no net flow at the leading edge and are there- 
fore discarded. Similar observations on buoyant flows 
of Newtonian fluids have been noted by Gebhart and 
Pera [ll]. 

f’(LO) = 1 

regardless of Le or w. 

(24) 

(2) Opposing case 
The resulting flow in this case can be upward or 

downward depending on the relative strength of the 
adverse buoyancy effect due to concentration (equa- 
tion (6) with the - sign). For clarity, the following 
discussion is limited to upward (positive everywhere) 

(c) Le < I. For Le < 1, the thermal boundary layer 
is thinner than the concentration boundary layer. The 
opposing solutal buoyancy effect dominates at the 
outer boundary region where 4(<, 1) > 0((, q). Hence, 
equation (25) indicates that a flow reversal (f’ < 0) 
will be manifest at the outer edge of the boundary 
layer for 1~ = l/2 (as well as for values of IY less than, 
but generally close to l/2 depending on the relative 
thickness of the thermal boundary layer). Thus for 
Le < 1, totally upward flows (f’ > 0 everywhere) are 
not possible for the whole range 0 < IL’ < l/2 but for 
a shorter range instead, represented by 0 < w < M’*. 
The upper limit 0 varies between 0 and l/2 as Le 
varies between 0 and 1. As in the Le > 1 case, it is 
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possible numerically to obtain predominantly upward 
flows with flow reversals in the outer part of the flow 
region for values of w in the range w* c w < l/2. Such 
flows are also discarded for the reason stated above. 

4. NUMERICAL SOLUTIONS 

Equations (19)-(22) were solved numerically by a 
finite-difference collocation scheme. In this method, 
the partial differential equations are first reduced to a 
set of ordinary differential equations by replacing the 
partial derivatives with respect to 5 by a finite-differ- 
ence formula centered at the <-interval midpoint. The 
resulting set of ordinary differential equations are in 
turn reduced to an algebraic system by the collocation 
method. Specifically, cubic Hermite polynomials are 
used as interpolating functions which are forced to 
satisfy the differential equations at the Gaussian quad- 
rature points. A graded q-spacing is used. The non- 
linear system is solved recursively by the quasi- 
linearization algorithm, using the converged solu- 
tions for the preceding 5 value as initial guesses for 
the current 5 value. The solution methodology is 
described in detail in ref. [12]. Solutions were carried 
out for Lewis numbers of 1, 2, 5, 10 and 100 and the 
transverse curvature parameter < ranging from 0 to 
10. The buoyancy parameter w was varied between 0 
and 1 for the aiding case, and between 0 and l/2 for 
the opposing case, which is the valid range for Le 3 1. 
The ‘base case’ solutions agree well with the local non- 
similarity solutions of Minkowycz and Cheng [9] for 
thermally driven flows. Recall that the ‘base case’ 
solutions are represented by 

Q(<,rt;Le,O) = d~(&rl;Le, 1) = 0(&g; 1,~) 

=4(C,rl;l,w) 

and 

f’(C, rl ; Le, 0) = f’(5, v ; Le, 1; AC) 

E -J’(&s;Le,l:OC)=f’([,~;l,w:AC). 

Although solutions were obtained only for Le 2 1 
in this study, the results and discussion presented in 
this section can be readily applied to cases with Le Q 1 
by taking advantage of the antisymmetry between 
the temperature and concentration equations in the 
present formulation. Equations (20)-(22) show that 
the temperature distribution 0(&q) for a given set 
of (Le, w) values is identical to the concentration 
distribution 4(<, q) for the case with (l/Le, 1 - w) and 
vice versa, i.e. 

e(<, rl ; k 4 = 4(& 1; l/k I- 4 

d(L tf ; Le, 4 = N5, tl ; l/k 1 - 4. 

t Compared to the half range 0 C w < l/2 for Le > 1, 
upward flows for Le < 1 are possible for only a small range 
0 Q w C w* (w* < l/2) and therefore are not presented in 
this study. 

Consequently, equation (19) shows that the flow field 
is invariant between these two cases 

Y(<, tt ; Le, 4 = f’(5. rl; l/k 1 - 4. 

In the aiding case, the above relations hold for all 
Le and 0 < w Q 1. In the opposing case, the above 
relations are valid for Le 2 1 and 0 d w Q l/2 (as well 
as for Le c 1 and 0 d w Q w*) ;t however, the flow 
for (l/Le, 1 -w) is in the opposite (downward) direc- 
tion as that for (Le, w). It should be noted that for 
downward flows, equation (25) is replaced by 

f’(T. V) = - [(I - w)0(& tl) - w#(& rt)l (28) 

to account for the occurrence of Row in the negative 
x-direction. 

Table 1 presents the temperature and concentration 
gradients at the surface for a vertical plate (5 = 0). 
These values are related to the local Nusselt and Sher- 
wood numbers by 

Nu, = q,xlW, - T,) 

= (cr,/A) I/*] - e yr, o)] (29a) 

Sh, = j,x/D(T, - T,) 

= (Gr.44 “2[- 4’(& WI. (29b) 

The variations of 0’ and 4’ with w are plotted in 
Fig. 2. In the aiding case, the heat transfer rates 
decrease with increasing w as the solutal buoyancy 
effect dominates. For Le 3 1, the mass transfer rates 
are highest for heat transfer driven flow (w = 0) ; they 
increase with increasing values of Le which confines 
the concentration boundary layer to an increasingly 
thinner layer. In the opposing case, heat and mass 
transfer rates also decrease with was the adverse con- 
centration buoyancy effect impedes the upward flow. 

Table 2 presents surface heat and mass transfer 
rates for a cylinder for selected values oft. Transverse 
curvature gives rise to higher temperature and con- 
centration gradients at the surface. The relative 
increase in the heat and mass transfer rates due to 
curvature can be measured by the ratios of the local 
surface heat and mass flux along a vertical cylinder to 

0.5 0.0 ” 0.5 1.0 

(Opposing) (Aiding) 

FIG. 2. Temperature and concentration gradients at the 
surface for e = 0 (vertical plate). 
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w 

Table 1. Results for A = - 0’(0,0) and B = - +‘(O, 0) for vertical plate 

Le = 2 Le=5 Lk== 10 Le=lOO 
A B A B A B A B 

1.000 AC 0.275 0.444 0.134 0.444 0.073 0.444 0.01 I 0.444 
0.833 AC 0.305 0.487 0.194 0.592 0.148 0.730 0.091 1.951 
0.667 AC 0.335 0.529 0.249 0.720 0.213 0.956 0.165 2.836 
0.500 AC 0.363 0.569 0.300 0.838 0.273 I.155 0.236 3.588 
0.333 AC 0.390 0.608 0.350 0.948 0.332 1.339 0.306 4.275 
0.167 AC 0.417 0.646 0.397 1.053 0.388 1.513 0.375 4.923 
0.000 0.444 0.683 0.444 1.154 0.444 1.680 0.444 5.546 
0.100 oc 0.392 0.601 0.391 1.004 0.392 1.458 0.396 4.805 
0.167 OC 0.356 0.544 0.355 0.902 0.357 1.307 0.365 4.306 
0.250 oc 0.308 0.468 0.309 0.770 0.313 1.114 0.325 3.671 
0.333 oc 0.256 0.384 0.261 0.631 0.267 0.912 0.284 3.019 
0.400 oc 0.208 0.308 0.219 0.510 0.228 0.740 0.251 2.473 
0.450 oc 0.165 0.238 0.185 0.407 0.197 0.598 0.226 2.037 
0.500 oc 0.102 0.136 0.141 0.277 0.160 0.427 0.199 1.550 

AC, aiding case ; OC, opposing case. 

Aiding 
0 w= 0 

.2 4 .6 

F 

CPR _____ 

FIG. 3. Heat and mass transfer rates for Le = 2 : (a) aiding 

l- Aiding p 

6 

FIG. 4. Heat and mass transfer rates for Le = 5 : (a) aiding 
case; (b) opposing case. case ; (b) opposing case. 
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Table 2. Results for A = - @‘(<. 0) and E = - q5’(<, 0) for vertical cylinder 

L4?=2 h-5 Lx=10 &=lOO 
w A B A B A B A B 

1.000 AC 0.435 0.619 
0.833 AC 0.469 0.665 
0.667 AC 0.502 0.709 
0.500 AC 0.533 0.751 
0.333 AC 0.562 0.792 
0.167 AC 0.591 0.83 1 
0.000 0.619 0.869 
0.167 OC 0.529 0.728 
0.333 oc 0.427 0.566 
0.500 oc 0.268 0.313 

0.242 0.619 0.203 0.619 
0.301 0.915 0.245 2.143 
0.372 1.145 0.324 3.033 
0.439 1.347 0.401 3.787 
0.501 1.533 0.476 4.476 
0.561 1.709 0.548 5.126 
0.619 1.878 0.619 5.750 
0.531 1.504 0.538 4.511 
0.439 1.110 0.455 3.227 
0.330 0.633 0.366 1.774 

I .OOO AC 0.581 0.775 
0.833 AC 0.615 0.824 
0.667 AC 0.650 0.870 
0.500 AC 0.683 0.915 
0.333 AC 0.714 0.957 
0.167 AC 0.745 0.998 
0.000 0.775 1.038 
0.167 OC 0.68 1 0.893 
0.333 oc 0.572 0.724 
0.500 oc 0.395 0.447 

0.290 (a) :679l 
0.349 01774 
0.410 0.906 
0.466 1.026 
0.520 1.139 
0.570 1.245 
0.619 1.348 
0.529 1.095 
0.433 0.823 
0.310 0.473 

(b) C = 2 
0.437 0.775 
0.490 0.937 
0.551 1.076 
0.612 1.200 
0.669 1.315 
0.723 1.425 
0.775 1.530 
0.68 1 1.274 
0.580 0.997 
0.449 0.638 

0.391 0.775 0.352 0.775 
0.440 1.083 0.385 2.327 
0.510 1.321 0.460 3.225 
0.582 1.528 0.543 3.984 
0.649 1.718 0.623 4.676 
0.714 1.896 0.700 5.328 
0.775 2.067 0.775 5.953 
0.683 1.692 0.690 4.715 
0.586 1.294 0.602 3.434 
0.470 0.814 0.508 1.994 

1 .OOO AC 0.973 1.187 0.834 (‘) l’l;,’ 0.791 1.187 0.755 1.187 
0.833 AC 1.008 1.242 0.879 1.369 0.833 1.531 0.782 2.841 
0.667 AC 1.044 1.296 0.934 1.526 0.889 1.794 0.834 3.770 
0.500 AC 1.080 1.347 0.998 1.666 0.963 2.020 0.919 4.549 
0.333 AC 1.117 1.396 1.063 1.794 1.040 2.224 1.011 5.255 
0.167 AC 1.152 1.443 1.126 1.913 1.115 2.414 1.100 5.916 
0.000 1.187 1.488 1.187 2.027 1.187 2.595 1.187 6.549 
0.167 OC 1.080 1.327 1.080 1.756 1.083 2.206 1.090 5.310 
0.333 oc 0.952 1.132 0.963 1.457 0.971 I .790 0.989 4.028 
0.500 oc n/c n/c 0.805 1.035 0.836 1.265 0.882 2.594 

l.OOOAC 1.563 1.787 
0.833 AC 1.597 1.849 
0.667 AC 1.632 1.911 
0.500 AC 1.670 1.971 
0.333 AC 1.708 2.029 
0.167 AC 1.748 2.085 
0.000 1.787 2.139 
0.167 OC 1.662 1.948 
0.333 oc 1.513 1.705 
0.500 oc n/c n/c 

(d) < = 10 
1.435 1.787 
1.478 1.994 
1.524 2.177 
1.580 2.341 
1.647 2.490 
1.717 2.628 
1.787 2.757 
1.664 2.456 
1.529 2.109 
n/c nlc 

1.397 1.787 1.364 1.787 
1.438 2.180 1.389 3.613 
1.481 2.482 1.425 4.597 
1.542 2.741 1.493 5.415 
1.621 2.971 1.586 6.149 
1.704 3.183 1.687 6.832 
1.787 3.381 1.787 7.482 
1.667 2.964 1.676 6.232 
1.540 2.502 1.563 4.929 
I .389 1.854 1.454 3.446 

AC, aiding case ; OC, opposing case ; n/c no convergence. 

those for a vertical plate. These are given by 

TPR = [av(-Gl,ilM~)l,, 

= [-UC, 0)1/[-W, WI (304 

CPR = f_L(~)1ey,/LL(x&., 

= [-~‘(~,O)l/[-d’(O,O)l. WW 

The ratios TPR and CPR are plotted against C in 
Figs. 3 and 4. Overall, the ratios increase nonlinearly 
at first but linearly for higher C values. The relative 
increase in the heat flux is particularly strong for w 
values close to 1 in the aiding case and for w values 

close to l/2 in the opposing case. This is also true for 
the mass flux in the latter case. 

Representative temperature and concentration pro- 
files are presented in Fig. 5 for L.e = 2 and in Fig. 6 for 
Le = 10. Temperature and concentration variations 
monotonically decrease from a maximum value of 1 
at the surface to 0 at infinity. The effect of transverse 
curvature (C) is to sharpen the variations near the 
surface but flatten the variations in the outer region, 
resulting in thicker boundary layers. The temperature 
boundary layer thickness 6, and the concentration 
boundary layer thickness &also increase with increas- 
ing w in both aiding and opposing cases. In the aiding 
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0 4 6 12 77 4 8 12 16 

FIG. 5. Dimensionless temperature and concentration pro- 
fIlesforLe=2:(a)w= IAC;(b)w=1/2AC;(c)w=O; 
(d) w = l/3 OC (- * ; ---, 5c.2; -.-, 

‘;A 
0 4 8 12 h 4 8 12 16 

FIG. 6. Dimensionless temperature and concentration pro- 
fdesforLe=lO:(a)w=lAC;(b)w=1/2AC;(c)w=O; 
(d) w = l/3 OC (- 

6 1 
{=0; ---, <=2; -.-, 
10). 

case, 6, increases with increasing Le, while 6, 
decreases since the concentration variations are con- 
fined to thinner layers as the Lewis number is 

increased. In the opposing case, the influence of Le 
on the temperature distribution is negligible except 
for w values close to l/2. 

The characteristics of the possible flow regimes are 
illustrated in Fig. 7 for both aiding and opposing 
cases. In the aiding case, the resultant velocity vari- 
ations are also monotonically decreasing from a 
maximum value of 1 at the surface to 0 at infinity. 
Since the limiting flows for w = 0 and 1 are identical, 
the velocity profiles initially diverge from, but later 
converge to these ‘base case’ solutions. The maximum 
deviation from the base case solutions occurs around 
w = l/2 shifting towards w = 1 as Le increases. The 
velocity gradients become steeper near the surface but 
become flatter away from it with increasing curvature 
parameter {, which increases the boundary layer 
thickness. 

In the opposing case, the upward flow is weakened 
considerably by the counteracting solutal buoyancy 
forces. Velocity profiles for Le = 1 are still mono- 
tonically decreasing from a maximum value of 
f’ = 1 - 2~ at the surface. For Le > I, however, vel- 
ocities near the surface can overshoot this value as w 
is increased. Thus the maximum velocity moves into 
the boundary layer beyond a threshold w value for a 
given Le. This threshold value is smaller for higher Le 
values. For a given w, the magnitude of the velocity 
overshoot increases with Le. The effect of curvature 
is to suppress or reduce this tendency and displace it 
away from the surface. 

5. SUMMARY 

A global treatment of heat and mass transfer in 
free convection about a vertical planar or cylindrical 
surface in a saturated porous medium is presented. 
Boundary layer analysis is formulated such that the 
governing equations can predict the whole spectrum 
of flows ranging from purely heat transfer driven flow 
to purely mass transfer driven flow. To this end, a 
buoyancy parameter w representing the magnitude of 
the solutal buoyancy force relative to the combined 
buoyancy force is introduced. Numerical solutions are 
generated for Lewis numbers 1,2,5,10 and 100. When 
the solutal density gradient assists the thermal density 
gradient, upward flows (positive everywhere) are 
possible for the full range 0 Q w < 1 for any value 
of the Lewis number. For cases with adverse solutal 
density gradients, upward flows are possible for the 
half range 0 Q w < l/2 when LX 2 1 and for an even 
,shorter w range when Le c 1. The curvature of the 
cylinder increases the surface heat and mass transfer 
rates and leads to thicker boundary layers. Although 
numerical results are presented for Le 3 1 and 
upward flows only, they can be readily applied to 
cases with Le < I and!or to downward flows by taking 
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Le=l Le=Z Le=5 Le=lO 

(4 

Le=l Le=Z Le=5 Le=lO 

(4 

FIG. 7. Dimensionless velocity (7) profiles for f.e = 1,2,5 and 10 : (a) w = J/2 AC ; (b) w = 0 ; (c) w = l/6 
OC; (d) w = l/3 OC ; (e) w = l/2 OC (- ,T=O;---,5=2;-.-,r=lo). 

advantage of the antisymmetry property in the for- 

mulation of the problem. 
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CONVECTION NATURELLE DE CHALEUR ET DE MASSE LE LONG DUN 
CYLINDRE VERTICAL DANS UN MILIEU POREUX 

RCum&On ttudie la convection naturelle simultanee de chaleur et de masse le long dun cyhndre dans 
un milieu poreux. L’analyse de couche hmite est formulte en fonction de I’effet de flottement thermique et 
solutal. Les caracteristiques du champ d’ecoulement sont analysees en detail pour les deux cas ou les 
gradients de concentration sont soit aides soit contraries par les forces de Rottement thermique. On discute 
les effets de la courbure, du parametre de Aottement et du nombre de Lewis sur les champs de temperature 

de concentration et de vitesse et sur les flux de chaleur et de masse a la surface. 

WARME- UND STOFFUBERTRAGUNG BE1 NATtiRLICHER KONVEKTION AN 
EINEM SENKRECHTEN ZYLINDER IN EINEM PORt)SEN MEDIUM 

Zusammenfassung-Der gekoppelte Wirme- und Stofftransport bei natiirlicher Konvektion an einem 
senkrechten Zylinder in einem gesittigten poriisen Medium wird untersucht. Bei der Formulierung der 
Grenzschichtgleichungen werden die gekoppelten Auftriebseffekte durch Dichte- und Kon- 
zentrationsunterschiede beriicksichtigt. Die Striimungsfelder werden fur den Fall gleichgerichteter wie such 
fiir den Fall entgegengesetzt wirkender Auftriebskdfte durch Konzentrations- und Dichteunterschiede 
detailliert untersucht. Die Einfliisse der Kriimmung, des Auftriebsparameters und der Lewis-Zahl auf das 
Temperatur-, Konzentrations- und Strdmungsfeld sowie auf den Wiirme- und Stofftransport an der 

Obertllche werden diskutiert. 

ECTECTBEHHOKOHBEKTHBHbIH TEI-IJIO- H MACCOIIEPEHOC BjIOJIb 
BEPTHKAl’IbHOI-0 IJHJIHHjIPA, I-IOMEIIJEHHOI-0 B IIOPHCTYIO CPEAY 

k”,TupP&kL3Wl,‘eTC~ COBMKTHbdi WECTBCHHOKOHBCYTHBHbIii TeMO- H Ma‘%Ol“e~HW BAOJIb BCp- 

THK~bHOr0 UHJUiHilpa, UOiUCUICHHOrO B HSbIlUCH~ IlOpSICT)‘lO Cpclly. klIiMa IiO~8HWlHOrO CJIOK 

@O~M)‘JlHp)‘~CX Ha OCHOBC lWUlOBOr0 II IOHUcRIp~OHHOrO S#N#EKTOB IlJlUWieCTH. %~KTCpHCTHKH 

norm ~ew~Hufd aHaJm3HpyIoTcn Lull JaayX cnynaes, rorna rparmetrrar KOHIIC~ &kTByoT ~60 
npOTHB, mr60 COBMWlTiO C X%UlOsOii IlOnW’.lHOft CanOik kmJUl3iipyCTC~ nnnnsnfe xpimH3HbI. napa- 
~erpa nonaehnrofi cunbi u pBc.na JIbionca rra nonn rehmcparyp~, ttomrenrpaunn u reuermlr, a ratmre na 

KO3I)@fKHCIllkl TeuJm- B r42uxonepcHoC.a Ha noaepxHms. 


